Belgium: Turbine Blade Designs to Reduce Costs

Siemens has already become somewhat of a leader in this field producing the world’s longest rotor blades for wind turbines. Measuring 75 meters in length, the blades are almost as big as the wingspan of an Airbus A380.

As they move, each rotor covers 18,600 square meters, the size of two and a half soccer fields, while the tips of the blades move at up to 80 meters per second, the equivalent of 290 kilometres per hour, states the company proudly.

The entire blade is poured as a single piece made of glass fibre-reinforced epoxy resin and balsa wood, meaning the final product has neither seams nor bonded joints and is extremely robust. At the same time, the blade weighs 20 per cent less than conventionally produced blades through the use of specially designed blade profiles that are also shaped to deliver maximum rotor performance at a range of different wind speeds. Whereas the first wind turbines generated 30 kilowatts and had five-meter-long rotor blades, the latest turbines can produce six megawatts of power, extols Siemens.

GE, Virginia Polytechnic Institute & State University (Virginia Tech),and the US National Renewable Energy Laboratory (NREL), believe their plans could put wind energy on an equal economic footing with traditional fossil fuels. They want to create an advanced wind blade using architectural fabrics, which would be wrapped around a metal frame, resembling a fishbone. The fabric would be tensioned around the ribs which run the length of the blade and are specially designed to meet the demands of wind blade operations. Conventional wind blades are constructed out of fibreglass, which is heavier and more labour and time-intensive to manufacture. This new blade design could reduce blade costs by 25-40 per cent, making wind energy as economical as fossil fuels without government subsidies, says GE.

But it is not just the big companies that investing in wind blade technology. A Tunisian start-up company called Saphon Energy has designed a wind-capturing device that eschews the windmill form factor in favour of a simple disc-shaped sail that catches and dances in the breeze. Meanwhile, in an effort to reduce waste and improve recyclability, the US National Science Foundation (NSF) has given $1.9 million to the University of Massachusetts and the University of Wichita to investigate whether a form of bio-based plastic made from soybean, linseed and other vegetable oils, plus cellulose fibres, could form the next generation of blades.

Press release, December 27, 2012; Image: siemens

Share this article

Follow Offshore Wind

Events>

<< May 2018 >>
MTWTFSS
30 1 2 3 4 5 6
7 8 9 10 11 12 13
14 15 16 17 18 19 20
21 22 23 24 25 26 27
28 29 30 31 1 2 3

International Conference Wind Turbine Bearings 2018

Industry experts from E.ON, Engie, Goldwind, Iberdrola, Vestas and many more are meeting to explore the complex factors that lead…

read more >

Onshore and Offshore Wind Engineering 2018

Hear from experts in onshore and offshore wind as they share operational experiences

read more >

8th New Energy Investor Summit

Finding excellent investment opportunities in wind, solar and hydroelectric power plants is difficult…

read more >

BlueWeek 2018

The seminar brings together industry, universities and research institutes active in ocean energy and aquaculture…

read more >

Jobs>

Looking to fill a job opening?

By advertising your job here, on the homepage of OffshoreWIND.biz, you’ll reach countless professionals in the sector. For more information, click below...

apply

O&M Engineer Structural

Here at Scottish Power Renewables we’re committed to remaining a UK leader in renewable energy. As well as investing in our technologies, we are committed to investing in the future of extraordinary people like you...

apply

Looking to fill a job opening?

By advertising your job here, on the homepage of OffshoreWIND.biz, you’ll reach countless professionals in the sector. For more information, click below...

apply

Vessels>